Low Temperature Catalytic Ethanol Conversion Over Ceria-Supported Platinum, Rhodium, and Tin-Based Nanoparticle Systems
نویسندگان
چکیده
Due to the feasibility of ethanol production in the United States, ethanol has become more attractive as a fuel source and a possible energy carrier within the hydrogen economy. Ethanol can be stored easily in liquid form, and can be internally pre-formed prior to usage in low temperature (200 o C – 400 o C) solid acid and polymer electrolyte membrane fuel cells. However, complete electrochemical oxidation of ethanol remains a challenge. Prior research of ethanol reforming at high temperatures (> 400 o C) has identified several metallic and oxide-based catalyst systems that improve ethanol conversion, hydrogen production, and catalyst stability. In this study, ceria-supported platinum, rhodium, and tin-based nanoparticle catalyst systems will be developed and analyzed in their performance as low-temperature ethanol reforming catalysts for fuel cell applications. Metallic nanoparticle alloys were synthesized with ceria supports to produce the catalyst systems studied. Gas phase byproducts of catalytic ethanol reforming were analyzed for temperature-dependent trends and chemical reaction kinetic parameters. Results of catalytic data indicate that catalyst composition plays a significant role in low-temperature ethanol conversion. Analysis of byproduct yields demonstrate how ethanol steam reforming over bimetallic catalyst systems (platinum-tin and rhodium-tin) results in higher hydrogen selectivity than was yielded over single-metal catalysts. Additionally, oxidative steam reforming results reveal a correlation between catalyst composition, byproduct yield, and ethanol conversion. By analyzing the role of temperature and reactant composition on byproduct yields from ethanol reforming, this study also proposes how these parameters may contribute to optimal catalytic ethanol reforming.
منابع مشابه
Effect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملThe Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation
Abstract—Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39...
متن کاملCatalytic coatings on steel for low-temperature propane prereforming to solid oxide fuel cell (SOFC) application.
Catalyst layers (4-20 microm) of rhodium (1 wt%) supported on alumina, titania, and ceria-zirconia (Ce(0.5)Zr(0.5)O(2)) were coated on stainless-steel corrugated sheets by dip-coating in very stable colloidal dispersions of nanoparticles in water. Catalytic performances were studied for low-temperature (< or = 500 degrees C) steam reforming of propane at a steam to carbon ratio equal to 3 and l...
متن کاملStudy of HMS Modified ZrO2 Supported Platinum Catalysts for Toluene Removal: Catalytic Combustion and Kinetics Study
Reaction behaviors and kinetics of catalytic oxidation of toluene with different feed flows over Pt/Zr(x)-HMS catalysts with Si/Zr ratio equal to 5, 10, 20 and 35 were investigated over a wide temperature range (200 – 500 oC). Results show that Pt/Zr(x)-HMS performs more easily toluene oxidation. The kinetic data were fitted by the Power-law and Mars–van Krevelen kinetic models. The fitting res...
متن کاملTernary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2.
Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We ...
متن کامل